
Verification of Timed Asynchronous Programs

Parosh Abdulla1, Mohamed Faouzi Atig1, Krishna S2, Shaan Vaidya2

Dec 13, FSTTCS 18, Ahmedabad

1 Uppsala University, Sweden
parosh@it.uu.se, mohamed_faouzi.atig@it.uu.se

2 IIT Bombay
krishnas@cse.iitb.ac.in, shaan@cse.iitb.ac.in

1



Table of contents

1. Introduction

2. Model

3. Verification Problems

4. Special subclass

5. Conclusion

2



Introduction



Asynchronous Programs

Widely used in building efficient and responsive software

Jobs broken up into tasks that are assigned to parallel threads

Asynchronous tasks stored in a buffer, can execute later

Asynchronous execution can lead to extremely intricate and
unpredictable behaviours programs.

3



Asynchronous Programs

Widely used in building efficient and responsive software

Jobs broken up into tasks that are assigned to parallel threads

Asynchronous tasks stored in a buffer, can execute later

Asynchronous execution can lead to extremely intricate and
unpredictable behaviours programs.

3



Asynchronous Programs

Widely used in building efficient and responsive software

Jobs broken up into tasks that are assigned to parallel threads

Asynchronous tasks stored in a buffer, can execute later

Asynchronous execution can lead to extremely intricate and
unpredictable behaviours programs.

3



Asynchronous Programs

Widely used in building efficient and responsive software

Jobs broken up into tasks that are assigned to parallel threads

Asynchronous tasks stored in a buffer, can execute later

Asynchronous execution can lead to extremely intricate and
unpredictable behaviours programs.

3



Related Work

Most of the existing work on asynchronous programs considers the
untimed version

[Sen, Viswanathan ’06] introduces multiset pushdown systems for
recursive asynchronous programs

[Fang et al ’16] introduce timed task automata which are extensions
of task automata1which have states associated with tasks and on
triggering, it is added to a queue

In [Ganty, Majumdar ’09], they consider timed constraints on tasks
but the model is different from ours

They show that the safety checking for their model is undecidable

1Fersman et al. 2007; Norstrom et al. 1999; Fersman et al. 2002

4



Main contribution

5



Model



Automata

ℓ1 ℓ2 ℓ3 ℓ4

6



Timed Automata

ℓ1 ℓ2 ℓ3 ℓ4
{x1} x1∈[0, 1)

7



Multiset Timed Automata

ℓ1 ℓ2 ℓ3 ℓ4
1?β
{x1}

1!1(κ[2])
x1∈[0, 1)

1!1(β)

1!1(β)

8



N - Multiset Timed Automata

ℓ1 ℓ2 ℓ3 ℓ4
1?β
{x1}

1!2(κ[2])
x1∈[0, 1)

1!3(β)

1!1(β)

1

2 ℓ5 ℓ6 ℓ7 ℓ8

nop2

2?κ
{x2}2?ζ

{x2} 2!3(ζ[2])

2!2(ζ)
{x2}

3 ℓ9 ℓ10 ℓ11 ℓ12
3!3(ζ[1])

3?β
{x3}

3?ζ
{x3}

3!2(ζ)

{x3}

9



N - Multiset Timed Automata

ℓ1 ℓ2 ℓ3 ℓ4
1?β
{x1}

1!2(κ[2])
x1∈[0, 1)

1!3(β)

1!1(β)

1

2 ℓ5 ℓ6 ℓ7 ℓ8

nop2

2?κ
{x2}2?ζ

{x2} 2!3(ζ[2])

2!2(ζ)
{x2}

3 ℓ9 ℓ10 ℓ11 ℓ12
3!3(ζ[1])

3?β
{x3}

3?ζ
{x3}

3!2(ζ)

{x3}

9



N - Multiset Timed Automata

ℓ1 ℓ2 ℓ3 ℓ4
1?β
{x1}

1!2(κ[2])
x1∈[0, 1)

1!3(β)

1!1(β)

1

2 ℓ5 ℓ6 ℓ7 ℓ8

nop2

2?κ
{x2}2?ζ

{x2} 2!3(ζ[2])

2!2(ζ)
{x2}

3 ℓ9 ℓ10 ℓ11 ℓ12
3!3(ζ[1])

3?β
{x3}

3?ζ
{x3}

3!2(ζ)

{x3}
9



Configuration of N-MTA

Configurations of the Timed Automata
(state + clock valuation)

+
Multiset Configurations

10



Verification Problems



Two Problems

Control State
Reachability

Configuration
Reachability

Can a particular tuple of states
be reached?

Can a particular tuple of states
with empty multisets be

reached?

11



Two Problems

Control State
Reachability

Configuration
Reachability

Can a particular tuple of states
be reached?

Can a particular tuple of states
with empty multisets be

reached?

11



Two Problems

Control State
Reachability

Configuration
Reachability

Can a particular tuple of states
be reached?

Can a particular tuple of states
with empty multisets be

reached?

11



Two Problems

Control State
Reachability

Configuration
Reachability

Can a particular tuple of states
be reached?

Can a particular tuple of states
with empty multisets be

reached?

11



Control State Reachability

Claim. Control State Reachability is decidable for N-MTA
Idea. Reduction to the coverability problem for Timed Petri Nets
with read-arcs (RTPN)

12



Timed Petri Nets with read arcs

t1

[0,3)*

[2,3)

t2

[0,1) (1,2)

t3

(3,4)

[1,2]

t4

[0,1)

[3]

[2]

13



Reduction from N-MTA to RTPN

States ←→ one place each

Clocks ←→ one place each

Bags ←→ multiple places for each

Transitions ←→ Normal arcs

Clock Constraints←→ Read arcs

To simulate the state of the automata, only one place per
automata is marked at a time

14



Reduction from N-MTA to RTPN

States ←→ one place each

Clocks ←→ one place each

Bags ←→ multiple places for each

Transitions ←→ Normal arcs

Clock Constraints←→ Read arcs

14



Reduction from N-MTA to RTPN

States ←→ one place each

Clocks ←→ one place each

Bags ←→ multiple places for each

Transitions ←→ Normal arcs

Clock Constraints←→ Read arcs

A place for each multiset, for each action, for each (integer)
deadline value: {0, 1, . . . ,dmax,∞}

14



Reduction from N-MTA to RTPN

States ←→ one place each

Clocks ←→ one place each

Bags ←→ multiple places for each

Transitions ←→ Normal arcs

Clock Constraints←→ Read arcs

When picking a task, check deadline as constraint on arc

14



Reduction from N-MTA to RTPN

States ←→ one place each

Clocks ←→ one place each

Bags ←→ multiple places for each

Transitions ←→ Normal arcs

Clock Constraints←→ Read arcs

14



Configuration Reachability

Claim. Configuration Reachability is undecidable for N-MTA
Idea. Reduction from the reachability problem for a 2-counter
machine

15



Reduction from 2-counter machines

Reduce reachability of 2-counter machines to configuration
reachability of a 1-MTA

• States of 1-MTA simulate states of the 2-counter machine

• Two types of tasks: number of tasks in bag simulates that
particular counter value

• Increment / Decrement - add or consume a task
• Zero test for counter 1 -

• Check x = 0
• Consume all tasks 2[0] and add tasks 2[1]
• Change state while checking x = 0
• Check x = 1 and reset clock
• Consume all tasks 2[1] and add as many 2[0] back
• Check x = 0, go to normal execution

• Zero tests guessed correctly if empty pending tasks at the end

16



Reduction from 2-counter machines

Reduce reachability of 2-counter machines to configuration
reachability of a 1-MTA

• States of 1-MTA simulate states of the 2-counter machine
• Two types of tasks: number of tasks in bag simulates that
particular counter value

• Increment / Decrement - add or consume a task
• Zero test for counter 1 -

• Check x = 0
• Consume all tasks 2[0] and add tasks 2[1]
• Change state while checking x = 0
• Check x = 1 and reset clock
• Consume all tasks 2[1] and add as many 2[0] back
• Check x = 0, go to normal execution

• Zero tests guessed correctly if empty pending tasks at the end

16



Reduction from 2-counter machines

Reduce reachability of 2-counter machines to configuration
reachability of a 1-MTA

• States of 1-MTA simulate states of the 2-counter machine
• Two types of tasks: number of tasks in bag simulates that
particular counter value

• Increment / Decrement - add or consume a task

• Zero test for counter 1 -

• Check x = 0
• Consume all tasks 2[0] and add tasks 2[1]
• Change state while checking x = 0
• Check x = 1 and reset clock
• Consume all tasks 2[1] and add as many 2[0] back
• Check x = 0, go to normal execution

• Zero tests guessed correctly if empty pending tasks at the end

16



Reduction from 2-counter machines

Reduce reachability of 2-counter machines to configuration
reachability of a 1-MTA

• States of 1-MTA simulate states of the 2-counter machine
• Two types of tasks: number of tasks in bag simulates that
particular counter value

• Increment / Decrement - add or consume a task
• Zero test for counter 1 -

• Check x = 0
• Consume all tasks 2[0] and add tasks 2[1]
• Change state while checking x = 0
• Check x = 1 and reset clock
• Consume all tasks 2[1] and add as many 2[0] back
• Check x = 0, go to normal execution

• Zero tests guessed correctly if empty pending tasks at the end

16



Reduction from 2-counter machines

Reduce reachability of 2-counter machines to configuration
reachability of a 1-MTA

• States of 1-MTA simulate states of the 2-counter machine
• Two types of tasks: number of tasks in bag simulates that
particular counter value

• Increment / Decrement - add or consume a task
• Zero test for counter 1 -

• Check x = 0

• Consume all tasks 2[0] and add tasks 2[1]
• Change state while checking x = 0
• Check x = 1 and reset clock
• Consume all tasks 2[1] and add as many 2[0] back
• Check x = 0, go to normal execution

• Zero tests guessed correctly if empty pending tasks at the end

16



Reduction from 2-counter machines

Reduce reachability of 2-counter machines to configuration
reachability of a 1-MTA

• States of 1-MTA simulate states of the 2-counter machine
• Two types of tasks: number of tasks in bag simulates that
particular counter value

• Increment / Decrement - add or consume a task
• Zero test for counter 1 -

• Check x = 0
• Consume all tasks 2[0] and add tasks 2[1]

• Change state while checking x = 0
• Check x = 1 and reset clock
• Consume all tasks 2[1] and add as many 2[0] back
• Check x = 0, go to normal execution

• Zero tests guessed correctly if empty pending tasks at the end

16



Reduction from 2-counter machines

Reduce reachability of 2-counter machines to configuration
reachability of a 1-MTA

• States of 1-MTA simulate states of the 2-counter machine
• Two types of tasks: number of tasks in bag simulates that
particular counter value

• Increment / Decrement - add or consume a task
• Zero test for counter 1 -

• Check x = 0
• Consume all tasks 2[0] and add tasks 2[1]
• Change state while checking x = 0

• Check x = 1 and reset clock
• Consume all tasks 2[1] and add as many 2[0] back
• Check x = 0, go to normal execution

• Zero tests guessed correctly if empty pending tasks at the end

16



Reduction from 2-counter machines

Reduce reachability of 2-counter machines to configuration
reachability of a 1-MTA

• States of 1-MTA simulate states of the 2-counter machine
• Two types of tasks: number of tasks in bag simulates that
particular counter value

• Increment / Decrement - add or consume a task
• Zero test for counter 1 -

• Check x = 0
• Consume all tasks 2[0] and add tasks 2[1]
• Change state while checking x = 0
• Check x = 1 and reset clock

• Consume all tasks 2[1] and add as many 2[0] back
• Check x = 0, go to normal execution

• Zero tests guessed correctly if empty pending tasks at the end

16



Reduction from 2-counter machines

Reduce reachability of 2-counter machines to configuration
reachability of a 1-MTA

• States of 1-MTA simulate states of the 2-counter machine
• Two types of tasks: number of tasks in bag simulates that
particular counter value

• Increment / Decrement - add or consume a task
• Zero test for counter 1 -

• Check x = 0
• Consume all tasks 2[0] and add tasks 2[1]
• Change state while checking x = 0
• Check x = 1 and reset clock
• Consume all tasks 2[1] and add as many 2[0] back

• Check x = 0, go to normal execution

• Zero tests guessed correctly if empty pending tasks at the end

16



Reduction from 2-counter machines

Reduce reachability of 2-counter machines to configuration
reachability of a 1-MTA

• States of 1-MTA simulate states of the 2-counter machine
• Two types of tasks: number of tasks in bag simulates that
particular counter value

• Increment / Decrement - add or consume a task
• Zero test for counter 1 -

• Check x = 0
• Consume all tasks 2[0] and add tasks 2[1]
• Change state while checking x = 0
• Check x = 1 and reset clock
• Consume all tasks 2[1] and add as many 2[0] back
• Check x = 0, go to normal execution

• Zero tests guessed correctly if empty pending tasks at the end

16



Reduction from 2-counter machines

Reduce reachability of 2-counter machines to configuration
reachability of a 1-MTA

• States of 1-MTA simulate states of the 2-counter machine
• Two types of tasks: number of tasks in bag simulates that
particular counter value

• Increment / Decrement - add or consume a task
• Zero test for counter 1 -

• Check x = 0
• Consume all tasks 2[0] and add tasks 2[1]
• Change state while checking x = 0
• Check x = 1 and reset clock
• Consume all tasks 2[1] and add as many 2[0] back
• Check x = 0, go to normal execution

• Zero tests guessed correctly if empty pending tasks at the end

16



Special subclass



Stateless and Time-Independent

Stateless

Time-independent

Unique state per automata for
picking up a task

Clocks reset before picking up
a task

17



Stateless and Time-Independent

Stateless Time-independent

Unique state per automata for
picking up a task

Clocks reset before picking up
a task

17



Stateless and Time-Independent

Stateless Time-independent
Unique state per automata for

picking up a task

Clocks reset before picking up
a task

17



Stateless and Time-Independent

Stateless Time-independent
Unique state per automata for

picking up a task
Clocks reset before picking up

a task

17



Control State Reachability

Claim. Control State Reachability is PSPACE-complete for stateless
& time-independent N-MTA

Idea.

PSPACE-hardness since N-MTA subsume timed automata
Reduction to a PSPACE-complete problem: coverability of 1-safe
RTPNs

• Number of relevant tasks in any bag at any point of time in the
run is bounded

• Once bound is established, construct 1-safe RTPN

18



Control State Reachability

Claim. Control State Reachability is PSPACE-complete for stateless
& time-independent N-MTA
Idea.

PSPACE-hardness since N-MTA subsume timed automata

Reduction to a PSPACE-complete problem: coverability of 1-safe
RTPNs

• Number of relevant tasks in any bag at any point of time in the
run is bounded

• Once bound is established, construct 1-safe RTPN

18



Control State Reachability

Claim. Control State Reachability is PSPACE-complete for stateless
& time-independent N-MTA
Idea.

PSPACE-hardness since N-MTA subsume timed automata
Reduction to a PSPACE-complete problem: coverability of 1-safe
RTPNs

• Number of relevant tasks in any bag at any point of time in the
run is bounded

• Once bound is established, construct 1-safe RTPN

18



Control State Reachability

Claim. Control State Reachability is PSPACE-complete for stateless
& time-independent N-MTA
Idea.

PSPACE-hardness since N-MTA subsume timed automata
Reduction to a PSPACE-complete problem: coverability of 1-safe
RTPNs

• Number of relevant tasks in any bag at any point of time in the
run is bounded

• Once bound is established, construct 1-safe RTPN

18



Control State Reachability

Claim. Control State Reachability is PSPACE-complete for stateless
& time-independent N-MTA
Idea.

PSPACE-hardness since N-MTA subsume timed automata
Reduction to a PSPACE-complete problem: coverability of 1-safe
RTPNs

• Number of relevant tasks in any bag at any point of time in the
run is bounded

• Once bound is established, construct 1-safe RTPN

18



Bounding the number of relevant tasks

Run. Sequence of time-elapse and discrete transitions

Given a run σ, define σi as the sequence of transitions
corresponding to a particular automata i
Block in σi. Transitions following picking up a task before
picking up the next task
Label all transitions with its block label
Relevance of tasks

19



Bounding the number of relevant tasks

Run. Sequence of time-elapse and discrete transitions

Given a run σ, define σi as the sequence of transitions
corresponding to a particular automata i

Block in σi. Transitions following picking up a task before
picking up the next task
Label all transitions with its block label
Relevance of tasks

19



Bounding the number of relevant tasks

Run. Sequence of time-elapse and discrete transitions
Given a run σ, define σi as the sequence of transitions
corresponding to a particular automata i

Block in σi. Transitions following picking up a task before
picking up the next task

Label all transitions with its block label
Relevance of tasks

19



Bounding the number of relevant tasks

Run. Sequence of time-elapse and discrete transitions
Given a run σ, define σi as the sequence of transitions
corresponding to a particular automata i

Block in σi. Transitions following picking up a task before
picking up the next task
Label all transitions with its block label

Relevance of tasks

19



Bounding the number of relevant tasks

Run. Sequence of time-elapse and discrete transitions
Given a run σ, define σi as the sequence of transitions
corresponding to a particular automata i
Block in σi. Transitions following picking up a task before
picking up the next task
Label all transitions with its block label

Relevance of tasks

19



Relevance of tasks

• Since we only care about the final control state that is reached,
if a block does not affect the final state of any automata, we
can ignore it

• If a control state can be reached starting from a configuration,
it can also be reached starting from a larger configuration

• Starting backwards, one can construct a dependency graph i.e.
which blocks affect the final state

20



Relevance of tasks

• Since we only care about the final control state that is reached,
if a block does not affect the final state of any automata, we
can ignore it

• If a control state can be reached starting from a configuration,
it can also be reached starting from a larger configuration

• Starting backwards, one can construct a dependency graph i.e.
which blocks affect the final state

20



Relevance of tasks

• Since we only care about the final control state that is reached,
if a block does not affect the final state of any automata, we
can ignore it

• If a control state can be reached starting from a configuration,
it can also be reached starting from a larger configuration

• Starting backwards, one can construct a dependency graph i.e.
which blocks affect the final state

20



Bounding the number of relevant tasks

• At any point in the run, the total number of relevant tasks in all
bags ≤ N

• This is because the relevance of blocks is based on which task
added which task which eventually resulted in the final control
state

• There cannot be more than one task in the bag whose blocks
resulted in the final control state of the same automata

21



Bounding the number of relevant tasks

• At any point in the run, the total number of relevant tasks in all
bags ≤ N

• This is because the relevance of blocks is based on which task
added which task which eventually resulted in the final control
state

• There cannot be more than one task in the bag whose blocks
resulted in the final control state of the same automata

21



Bounding the number of relevant tasks

• At any point in the run, the total number of relevant tasks in all
bags ≤ N

• This is because the relevance of blocks is based on which task
added which task which eventually resulted in the final control
state

• There cannot be more than one task in the bag whose blocks
resulted in the final control state of the same automata

21



Reduction to 1-safe RTPN

Similar to the previous construction of RTPN but ...

Since the number of relevant tasks is bounded, we have
multiple 1-safe places to store them
While picking a task, can pick from any of the N copies
While adding a task, non-deterministically add to any one of
the multiple places
Choose to not add a task non-deterministically (guess it to be
not relevant)

22



Reduction to 1-safe RTPN

Similar to the previous construction of RTPN but ...

Since the number of relevant tasks is bounded, we have
multiple 1-safe places to store them

While picking a task, can pick from any of the N copies
While adding a task, non-deterministically add to any one of
the multiple places
Choose to not add a task non-deterministically (guess it to be
not relevant)

22



Reduction to 1-safe RTPN

Similar to the previous construction of RTPN but ...

Since the number of relevant tasks is bounded, we have
multiple 1-safe places to store them
While picking a task, can pick from any of the N copies

While adding a task, non-deterministically add to any one of
the multiple places
Choose to not add a task non-deterministically (guess it to be
not relevant)

22



Reduction to 1-safe RTPN

Similar to the previous construction of RTPN but ...

Since the number of relevant tasks is bounded, we have
multiple 1-safe places to store them
While picking a task, can pick from any of the N copies
While adding a task, non-deterministically add to any one of
the multiple places

Choose to not add a task non-deterministically (guess it to be
not relevant)

22



Reduction to 1-safe RTPN

Similar to the previous construction of RTPN but ...

Since the number of relevant tasks is bounded, we have
multiple 1-safe places to store them
While picking a task, can pick from any of the N copies
While adding a task, non-deterministically add to any one of
the multiple places
Choose to not add a task non-deterministically (guess it to be
not relevant)

22



Configuration Reachability

Claim. Configuration Reachability is decidable for stateless &
time-independent N-MTA
Idea.

WQO over the configurations of the N-MTA

Karp-Miller style algorithm for reachability

23



Regions

• Potentially infinite configurations (state + clock valuation +
multiset config)

• But if they agree on the integral parts of the clocks, ages of
tasks and the ordering of fractional parts of the clocks, ages of
tasks: very similar!

•

Region = (clocks+ tasks with fractional part = 0)
+ (clocks+ tasks with smallest fractional part)
+ (clocks+ tasks with second smallest fractional part)
+ . . .

+ (clocks+ tasks with ages larger than the max value)

• Regions form a WQO

24



Regions

• Potentially infinite configurations (state + clock valuation +
multiset config)

• But if they agree on the integral parts of the clocks, ages of
tasks and the ordering of fractional parts of the clocks, ages of
tasks: very similar!

•

Region = (clocks+ tasks with fractional part = 0)
+ (clocks+ tasks with smallest fractional part)
+ (clocks+ tasks with second smallest fractional part)
+ . . .

+ (clocks+ tasks with ages larger than the max value)

• Regions form a WQO

24



Regions

• Potentially infinite configurations (state + clock valuation +
multiset config)

• But if they agree on the integral parts of the clocks, ages of
tasks and the ordering of fractional parts of the clocks, ages of
tasks: very similar!

•

Region = (clocks+ tasks with fractional part = 0)
+ (clocks+ tasks with smallest fractional part)
+ (clocks+ tasks with second smallest fractional part)
+ . . .

+ (clocks+ tasks with ages larger than the max value)

• Regions form a WQO

24



Regions

• Potentially infinite configurations (state + clock valuation +
multiset config)

• But if they agree on the integral parts of the clocks, ages of
tasks and the ordering of fractional parts of the clocks, ages of
tasks: very similar!

•

Region = (clocks+ tasks with fractional part = 0)
+ (clocks+ tasks with smallest fractional part)
+ (clocks+ tasks with second smallest fractional part)
+ . . .

+ (clocks+ tasks with ages larger than the max value)

• Regions form a WQO

24



Algorithm for decidability

• Start with initial region and add it to a set
• Pick an unmarked region from the set, add its successors to the
set and mark the current region

• In the set, at any point, if there is a region larger than another
region in the set, remove it

Termination guaranteed from the WQO property of regions

Works because if an empty multiset can be reached from a
configuration, it can also be reached from a smaller configuration

25



Statelessness

ℓ1 ℓ2 ℓ3 ℓ4
?β1 ?β2 ?β3

ℓ5

ℓ6

ℓ7

?ζ

!β1, !β2, !β3,nop
nop

2-MTA which is not stateless

c1=(ℓ1, ℓ6, {β1, β3}, ∅) ⪯ (ℓ1, ℓ6, {β1, β2, β3}, ∅)=c2

From c2, one can reach (ℓ4, ℓ6, ∅, ∅), but not from c1

26



Statelessness

ℓ1 ℓ2 ℓ3 ℓ4
?β1 ?β2 ?β3

ℓ5

ℓ6

ℓ7

?ζ

!β1, !β2, !β3,nop
nop

2-MTA which is not stateless

c1=(ℓ1, ℓ6, {β1, β3}, ∅) ⪯ (ℓ1, ℓ6, {β1, β2, β3}, ∅)=c2

From c2, one can reach (ℓ4, ℓ6, ∅, ∅), but not from c1

26



Statelessness

ℓ1 ℓ2 ℓ3 ℓ4
?β1 ?β2 ?β3

ℓ5

ℓ6

ℓ7

?ζ

!β1, !β2, !β3,nop
nop

2-MTA which is not stateless

c1=(ℓ1, ℓ6, {β1, β3}, ∅) ⪯ (ℓ1, ℓ6, {β1, β2, β3}, ∅)=c2

From c2, one can reach (ℓ4, ℓ6, ∅, ∅), but not from c1

26



Time-independence

s1

s2

s3

s4
?β3

x∈(0, 1)

?β1

x = 0
x∈[1, 1]

?β2 x∈[1,∞){x}

s6 s5
?ζ

!β1, !β2!, !β3,nop

2-MTA which is not time independent

c1=(((s1,0), s6), {(β1,0,∞), (β3,0,∞)}, ∅)
c2=(((s1,0), s6), {(β1,0,∞), (β2,0,∞), (β3,0,∞)}, ∅) c1 ⪯ c2
(((s1,0), s6), ∅, ∅) is reachable from c2 but not from c1.

27



Time-independence

s1

s2

s3

s4
?β3

x∈(0, 1)

?β1

x = 0
x∈[1, 1]

?β2 x∈[1,∞){x}

s6 s5
?ζ

!β1, !β2!, !β3,nop

2-MTA which is not time independent

c1=(((s1,0), s6), {(β1,0,∞), (β3,0,∞)}, ∅)

c2=(((s1,0), s6), {(β1,0,∞), (β2,0,∞), (β3,0,∞)}, ∅) c1 ⪯ c2
(((s1,0), s6), ∅, ∅) is reachable from c2 but not from c1.

27



Time-independence

s1

s2

s3

s4
?β3

x∈(0, 1)

?β1

x = 0
x∈[1, 1]

?β2 x∈[1,∞){x}

s6 s5
?ζ

!β1, !β2!, !β3,nop

2-MTA which is not time independent

c1=(((s1,0), s6), {(β1,0,∞), (β3,0,∞)}, ∅)
c2=(((s1,0), s6), {(β1,0,∞), (β2,0,∞), (β3,0,∞)}, ∅)

c1 ⪯ c2
(((s1,0), s6), ∅, ∅) is reachable from c2 but not from c1.

27



Time-independence

s1

s2

s3

s4
?β3

x∈(0, 1)

?β1

x = 0
x∈[1, 1]

?β2 x∈[1,∞){x}

s6 s5
?ζ

!β1, !β2!, !β3,nop

2-MTA which is not time independent

c1=(((s1,0), s6), {(β1,0,∞), (β3,0,∞)}, ∅)
c2=(((s1,0), s6), {(β1,0,∞), (β2,0,∞), (β3,0,∞)}, ∅) c1 ⪯ c2
(((s1,0), s6), ∅, ∅) is reachable from c2 but not from c1.

27



Conclusion



Conclusion

28



Future Work

Priority for tasks

Recursive programs: Timed pushdown automata

Schedulability?

29



Future Work

Priority for tasks

Recursive programs: Timed pushdown automata

Schedulability?

29



Future Work

Priority for tasks

Recursive programs: Timed pushdown automata

Schedulability?

29



Questions?

29


	Introduction
	Model
	Verification Problems
	Special subclass
	Conclusion

